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ABSTRACT

IL

We say that the random variable X is more variable than Y if

Elf(X)] Z E~f(Y)] for all increasing convex functions f Weprv

a preservation, under random sized sums, property of this ordering
and then apply it to branching processes and shock models.
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SOME APPLICATIONS OF A RESULT CONCERNING VARIABILITY ORDERINGS

by

Sheldon M. Ross

1. A VARIABILITY RESULT

If X and X2  are random variables having respective distributions

FI  and F2 , then we say that X 1  (read is less variable than
1 2ra Xe r 2)

or equivalently that F 1  F if
2

f f(x)dF 1 (x) <f f(x)dF2 (x)
04 0

for all increasing convex functions f . Some easily derived properties of

this ordering are

1. F1 < F2  if and only if

fFl(x)dx >fF2(x)dx for all a

0 a

where F, = I - Fi

2. If Fi  .Gi , 1 = 1 ,2 then F1 * F2 :< G I G2  where * denotes

convolution.

We will now present a theorem concerning this orderi.'g and in Sections

2 and 3 apply it to branching processes and shock models.
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Theorem 1:

Let X1,X2, ... be a sequence of nonnegative independent and identically

distributed random variables and similarly Yl,Y2' Let N and M be

integer valued nonnegative random variables that are independent of the Xi

and Yi sequences. Then

N Mi ,I i > 1 N > M X. Yi

v V ifl i

Proof:

We will first show that

N M
xi X El.

Let h denote an increasing convex function. To prove the above we must

show that

(1) EE1(E X.)] > E[h(Z Xi)1

Since N > M , and they are independent of the X. , the above will follow
v 1

if we can show that the function g(n) , defined by

g(n) - E[h(X 1 + + X n)]

is an increasing convex function of n • As it is clearly increasing

since h is and each Xi is nonnegative it remains to show that g is

convex, or, equivalently, that

(2) g(n+ 1) - g(n) is increasing in n

. .... ...
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n
To prove this let S n  X, and note that

g(n + 1) - g(n) - E[h(Sn + Xn+I) - h(S)]

Now,

E[h(Sn + Xn-1 ) - h(S) Sn 
= t] - E[h(t + Xn+)- h(t)]

= f(t) (say).

As h is convex, it follows that f(t) is increasing in t Also, as

S increases in n , we see that E[f(S n) increases in n But

E[f(S)] g(n + 1) - g(n)

and thus (2) and (1) are satisfied.

We have thus proven that

N M
Sxi x
1 v i

and the proof will be completed by showing that

M M
X xi Yi
i v1

or, equivalently, that for increasing, convex h

°jM Y

But

V
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E [hV Xi) m m ] E E[h(V Xi)] by independence

> E h( YI] since 2C > Y

E E[hQjY )

and the result follows by taking expectations of both sides of the above.1

64
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2. A BRANCHING PROCESS APPLICATION

Consider two Galton Watson branching processes in which individuals

at the end of their lifetime give birth to a random number of offspring.

Let X~i), j > 1 , n > 0 denote the number of offspring of the j th
jn 

th

individual of the nth generation in the ith branching process, i = 1 , 2

xi)Suppose that the random variables Xjn j > 1 , n > 0 are independent

for i 1 , 2 and have a distribution not depending on j . In addition,

suppose that

X() > X( 2 ) for all n , j

jn - jn

z(i) th t

Let Z , i 1, 2 denote the size of the n generation of the in

process.

Proposition 2:

If Z(i) , i = , 2 ,then Z(1 ) > Z (2 ) for all n
0 n - n

v

Proof:

The proof is by induction on n . As it is true for n = 0

assume it for n . Now

Z ( l )

(1) ( )

n+l j--i j,n

z (2)z(2) n x(2)
jn+1= j ,n

and so the result follows from Theorem 1. II



We now show that if the second (less) variable process has the same

mean number of offspring per individual as does the first then it is

less likely, at each generation to become extinct.

Corollary 3:

Suppose E E("] for all j, n If (i) 1 ,i , 2
a Xn j &hljn 0

(1) (2)and Xin 2. >X 2 ) ". for all j , n
nv

PN )= 0 .pz (2 ) = for all n

Proof:

(1) (2)
From Proposition 2 we have that Z(n > Z t )  and thus

v

n n>

i=2 i=2

or, equivalently, since E[Z(i)] = E = [n i= 0  jiX3

P - Pn I > I1 > P 1_ Pn 2 > 1

which proves the result, 11

Remarks:

Wi In [2], Freedman and Purves showed that among all branching

processes for which P[Xjn 1] = 0 and E[X. ] M < 2

all j , n , the one having the least chance of going extinct

is the one with P{X. - 0} - I - M/2 = I - P{X. = 2}
In jn

This also follows from Corollary 3 upon application of the

following lemma (with a = 0)
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Lemma 4:

(M. - a)_
Let P{X = 1} = c , P{X = 01 = (1 - a) ( 2 P{X = 21 = 2

and let Y be a nonnegative, integer valued, and such that P{Y = a1 < n

and ElY] = M . If a < M < 2 - a then X < Y

V

Proof:

We must show that

SP{X > i} < [ P{Y > i} , n = 1,2,...•

i=n+l i=n+l

As E[X] E[Y] = M this is equivalent to

n n
P(X > i > P{Y > il , n = 1,2,....

i=l i=l

When n = 1 the above reduces to P{X = 01 < P{Y = 0}. This follows

since, as P{Y 11 < P{X = 1} , if P{Y = 01 < P{X = 0} then it would

not be possible for E[Y] to equal E[X] When n > 1 the above is

equivalent to

n
M > P{Y> i}~i=lI

which follows since E[Y] = M "

....... .
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3. A SHOCK MODEL APPLICATION

Suppose that shocks occur in accordance with a renewal process having

interarrival distribution G and mean ,i Each shock gives rise to a

nonnegative random damage which, independent of all else, has probability

distribution F . The damages are assumed to be additive and we let

D(t) denote the damage at time t . That is

N(t)
D(t)= i X.

' i=l

where X. is the damage of the ith shock and N(t) is the number of

shocks by t . The system is assumed to fail the first time that D(t)

exceeds some constant c That is, the system fails at time TF,G where

TF G = min {t : D(t) > c}

We will obtain a variability result about TF G when both F and G

are NBUE distributions, where a distribution of a nonnegative random

variable X is said to be NBUE (new better than used in expectation) if

E[X - t j X > t] < E(X) for all t > 0

Letting

N(c) = max {n : X + ... + X < c}

then the system will fail at the time of the N(c) + I shock.

Lemma 5:

If F is NBUE then

N(c) + 1 < N (c) + I
V



9

where N (c) is a Poisson random variable with mean c.F where

uF = E[X]

Proof:

As N(c) is just the number of renewals by time c of a renewal

process whose interarrival distribution is NBUE with mean w the result

follows from Theorem 3.17 on page 173 of [11.11

Proposition 6:

If F and G are both NBUE distributions then

T < TF,G EVE

where E1 and E2 are exponential random variables having the same means

as F and G respectively.

Proof:

We can express TF,G by

N(c)+l
T TF,G ii Y

where the Yi ' i > 1 , are the interarrival times between successive

shocks. They are thus independent and have distribution G . Now it is

well known that an NBUE distribution G is less variable than an exponential

distribution with the same mean and so

Y Yi < Ci when ci is exponential with mean pGv

The result now follows from Lemma 5 and Theorem 1.
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Remark:

N (W)+l ,
As TE i it follows upon conditioning on N (c) that

I 1

P 1 -pFc ( )'F c ) i

PT EV < e ( ,F G+(x)
E 1 'E2 - i=0

where Cn (x) is the gama distribution with parameters n and I/ G

(its mean is n G) Also if F and G are NBUE then from Proposition 6

all of the moments of T are no greater than the corresponding moments
* F,G

of TEE . For instance

E[TTF,G < ET EVE = E[(N (c) + =)G] (cVF + I)" G



REFERENCES

[1] Barlow, R. and F. Proschan, STATISTICAL THEORY OF RELIABILITY AND

LIFE TESTING, Holt, Rinehart and Winston, (1975).

[2] Freedman, D. and R. Purves, "Timid Play is Optimal II," Annals of

Mathematical Statistics, Vol. 38, pp. 1284-1285, (1967).

[3] Goodman, L. A., "How to Minimize or Maximize the Probabilities of

Extinction in a Galton-Watson Process and in Some Related
Multiplicative Population Processes," Annals of Mathematical

Statistics, Vol. 39, pp. 1700-1710, (1968).

I

.4e

'1J


